### Machine Learning for Sciences Notes from Recent Experiences

leva Kazlauskaite

#### Computation Statistics & ML group lead by Prof Mark Girolami



## Variational Bayesian approximation of inverse problems using sparse precision matrices

Jan Povala <sup>1, 3</sup>, leva Kazlauskaite<sup>2</sup>, Eky Febrianto <sup>2, 3 4</sup>, Fehmi Cirak <sup>2</sup>, Mark Girolami <sup>2, 3</sup>

- Imperial College London
  University of Cambridge
- University of Cambridge
  2
- The Alan Turing Institute
- <sup>4</sup> University of Glasgow

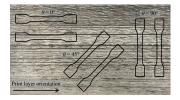
Imperial College London

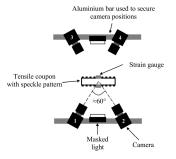




Published at Journal of Computer Methods in Applied Mechanics and Engineering (CMAME) 2022

## 3D printed steel coupons











(a) Before testing



(c) 45° coupon after testing





(d) 90° coupon after testing

イロト イヨト イヨト イヨト



## Formulating PDE-based Bayesian inverse problem

▶ We consider an elliptic PDE of the form:

 $-\nabla \cdot (\exp(\kappa(\boldsymbol{x}))\nabla u(\boldsymbol{x})) = f(\boldsymbol{x}),$ 

▶ Using FEM, we obtain a linear system:

$$\mathbf{A}(\boldsymbol{\kappa})\mathbf{u}=\mathbf{f}\,,$$

► The likelihood is given by

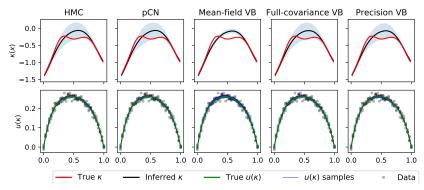
$$p(\boldsymbol{y} \mid \boldsymbol{\kappa}) = p(\boldsymbol{y} \mid \boldsymbol{u}(\boldsymbol{\kappa})) = \mathcal{N}(\mathbf{A}(\boldsymbol{\kappa})^{-1}\mathbf{f}, \sigma_y^2 \mathbf{I}).$$

► The prior is:

$$\log p(\boldsymbol{\kappa}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_{\psi}(x, x)).$$

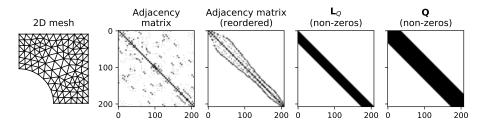
We develop the variational inference scheme for this problem.

# Variational Bayesian approximation of inverse problems using sparse precision matrices



True  $\ell_{\kappa} = 0.2$ , Prior  $\ell_{\kappa} = 0.3$ 

## Leveraging Sparsity – Outlook



#### Outlook:

 Leverage sparse linear algebra routines and tailored optimisation schemes.

Image: Image:

### Physics Informed Generative Models Scalable Deep probabilistic Models for PDEs

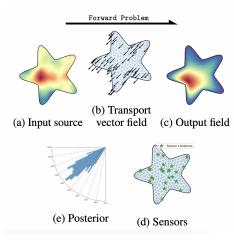
Arnaud Vadeboncoeur <sup>1</sup> Ö. Deniz Akyildiz <sup>2</sup> leva Kazlauskaite <sup>1</sup> Mark Girolami <sup>1</sup> Fehmi Cirak <sup>1</sup>

> <sup>1</sup> University of Cambridge <sup>2</sup> Imperial College London

#### Imperial College London



## PDE-based generative modelling



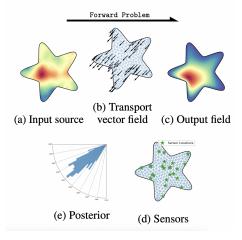
Variational Autoencoding of PDE Inverse Problems (2020), Tait, Damoulas

∃ ⊳

-

Image: Image:

## PDE-based generative modelling



Variational Autoencoding of PDE Inverse Problems (2020), Tait, Damoulas

Broken down:

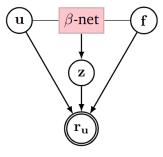
- Parametric PDE simulation
- Uncertainty Quantification
- Forward and Inverse Solutions
- Data incorporation & Dataless
- Scalable

Methods:

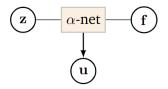
- Weighted residual method
- Neural networks
- Variational inference

## **Physics Informed Generative Models**

# Lower Bound on the Residual Evidence $\log p_{\alpha,\beta}(\mathbf{r}) \ge \int \log \frac{p(\mathbf{r}_{\mathbf{u}} | \mathbf{u}, \mathbf{z}, \mathbf{f}, \boldsymbol{\omega}) p_{\beta}(\mathbf{z} | \mathbf{u}, \mathbf{f}, \boldsymbol{\omega}) p(\mathbf{u})}{q_{\alpha}(\mathbf{u} | \mathbf{z}, \mathbf{f}, \boldsymbol{\omega}) p(\mathbf{z})} \times q_{\alpha}(\mathbf{u} | \mathbf{z}, \mathbf{f}, \boldsymbol{\omega}) p(\mathbf{z})$

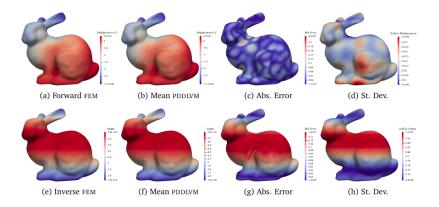


(a) Probabilistic Model with  $\beta$ -Net



(b) Variational Approximation with  $\alpha$ -Net

## Linear elasticity – Forward and Inverse problem



Outlook:

- Place for generative modelling
- Useful latent variables

#### Ice Core Dating via Probabilistic Programming

Aditya Ravuri <sup>1</sup> Tom Andersson <sup>2, 3</sup> leva Kazlauskaite <sup>1, 3</sup> J. Scott Hosking <sup>2, 3</sup> Neil D. Lawrence <sup>1, 2</sup> Markus Kaiser <sup>1, 3</sup>

<sup>1</sup> University of Cambridge <sup>2</sup> The Alan Turing Institute <sup>3</sup> British Antarctic Survey



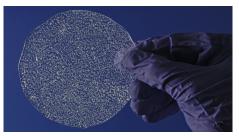
The Alan Turing Institute



イロト イポト イヨト イヨト

# Palaeoclimatology – Ice core dating

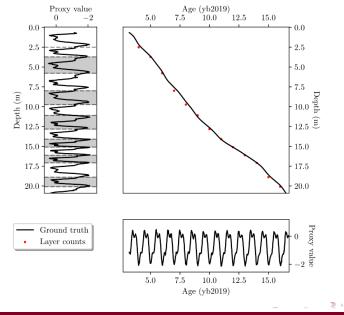






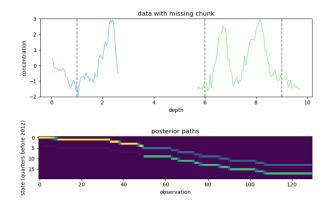


## Ice core dating



æ

## Hidden Markov model – Probabilistic programming



Outlook:

- Probabilistic Programming Languages (PPLs) enable composability of model blocks while ensuring maintainability
- Interpretation is hard

### Multi-fidelity experimental design for simulators with Application to Ice Sheet Models

Pierre Thodoroff <sup>1</sup> Markus Kaiser <sup>1, 3</sup> C. Rosie Williams <sup>3</sup> Robert Arthern <sup>3</sup> J. Scott Hosking <sup>2, 3</sup> Neil D. Lawrence <sup>1, 2</sup> Ieva Kazlauskaite <sup>1, 3</sup>

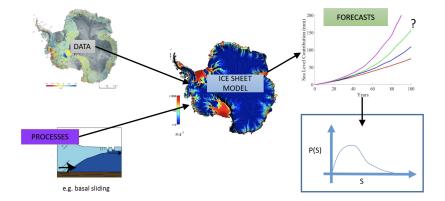
<sup>1</sup> University of Cambridge
 <sup>2</sup> The Alan Turing Institute
 <sup>3</sup> British Antarctic Survey





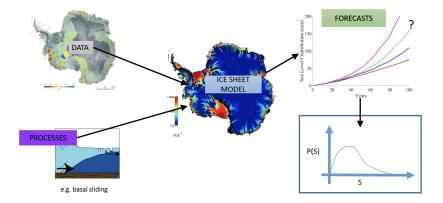


## Ice Sheet Models – Hybrid modelling



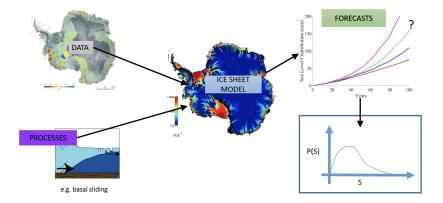
< □ > < 🗇 >

## Ice Sheet Models – Hybrid modelling



- Historical data in ensembles
- ▶ Empirical priors of parameters (*e.g.*, exponent in Glen's law)

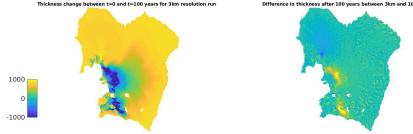
## Ice Sheet Models – Hybrid modelling



- Historical data in ensembles
- ▶ Empirical priors of parameters (*e.g.*, exponent in Glen's law)

What can ML offer?

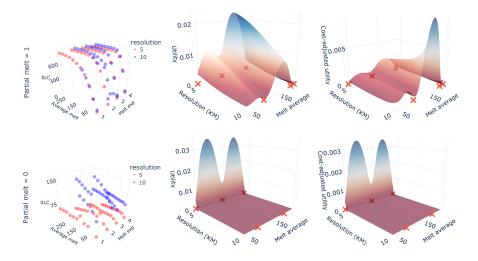
## Change in prediction based on experimental parameters



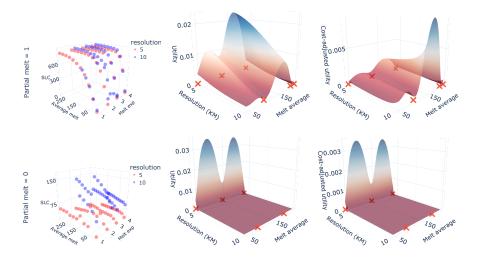
Difference in thickness after 100 years between 3km and 10km runs

イロト イポト イヨト イヨト

## Ice sheet experimental design



## Ice sheet experimental design



#### Outlook:

Place for statistics/machine learning

## Discussion

- ▶ Sparse algebra in ML
- Application of generative models
- Probabilistic programming languages
- Role of ML



