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3D printed steel coupons
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Formulating PDE-based Bayesian inverse problem

▶ We consider an elliptic PDE of the form:

−∇ · (exp(κ(x))∇u(x)) = f (x),

▶ Using FEM, we obtain a linear system:

A(κ)u = f ,

▶ The likelihood is given by

p(y | κ) = p(y | u(κ)) = N (A(κ)−1f, σ2
yI) .

▶ The prior is:
log p(κ) = N (0,Kψ(x, x)).

We develop the variational inference scheme for this problem.
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Variational Bayesian approximation of inverse
problems using sparse precision matrices
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Leveraging Sparsity – Outlook
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Outlook:
▶ Leverage sparse linear algebra routines and tailored optimisation

schemes.
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Physics Informed Generative Models
Scalable Deep probabilistic Models for PDEs

Arnaud Vadeboncoeur 1 Ö. Deniz Akyildiz 2

Ieva Kazlauskaite 1 Mark Girolami 1 Fehmi Cirak 1

1 University of Cambridge
2 Imperial College London

Ieva Kazlauskaite (UoC) October 21, 2022 7 / 19



PDE-based generative modelling

Variational Autoencoding of PDE Inverse Problems (2020), Tait, Damoulas

Broken down:
▶ Parametric PDE simulation
▶ Uncertainty Quantification
▶ Forward and Inverse Solutions
▶ Data incorporation & Dataless
▶ Scalable

Methods:
▶ Weighted residual method
▶ Neural networks
▶ Variational inference
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Physics Informed Generative Models

Lower Bound on the Residual Evidence
log pα,β(r) ≥

∫
log

p(ru|u, z, f,ω)pβ(z|u, f,ω)p(u)
qα(u|z, f,ω)p(z)

×

qα(u|z, f,ω)p(z)p(f)p(ω)dudzdf.

(a) Probabilistic Model with
β-Net

(b) Variational Approximation
with α-Net
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Linear elasticity – Forward and Inverse problem

Outlook:
▶ Place for generative modelling
▶ Useful latent variables
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Ice Core Dating
via Probabilistic Programming
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Palaeoclimatology – Ice core dating
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Ice core dating
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Hidden Markov model – Probabilistic programming

Outlook:
▶ Probabilistic Programming Languages (PPLs) enable composability of

model blocks while ensuring maintainability
▶ Interpretation is hard
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Multi-fidelity experimental design for simulators
with Application to Ice Sheet Models
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Ice Sheet Models – Hybrid modelling

▶ Historical data in ensembles
▶ Empirical priors of parameters (e.g., exponent in Glen’s law)

What can ML offer?
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Change in prediction based on experimental
parameters
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Ice sheet experimental design
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Outlook:
▶ Place for statistics/machine learning
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Discussion

▶ Sparse algebra in ML

▶ Application of generative models

▶ Probabilistic programming languages

▶ Role of ML
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